Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Oral Investig ; 23(10): 3905-3914, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30729346

RESUMO

OBJECTIVES: Suppression of periodontal pathogens in the oral cavity of periodontally healthy individuals may lower the risk for periodontal or periimplant diseases. Therefore, the present study aimed to analyze the effect of supragingival debridement (SD) with adjunctive full mouth glycine powder air polishing (FM-GPAP) on the prevalence of periodontal pathogens in periodontally healthy individuals. MATERIALS AND METHODS: Eighty-seven systemically and periodontally healthy intraoral carriers of red complex bacteria, i.e., Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola or other periodontal pathogens including Aggregatibacter actinomycetemcomitans, Prevotella intermedia, and Eikenella corrodens were enrolled into the study and randomly assigned to receive SD with adjunctive FM-GPAP (test, n = 42) or SD alone (control, n = 45). In the first observation period, microbiological samples were obtained prior to, and 2, 5, and 9 days following intervention. If one of these periodontal pathogens could still not be identified, additional microbial sampling was performed after 6 and 12 weeks. RESULTS: The prevalence of red complex bacteria was significantly reduced in the test compared to the control group following treatment (p = 0.004) and at day 9 (p = 0.031). Intragroup comparison showed a significant (test, p < 0.001; control, p ≤ 0.01) reduction in the mean prevalence in both groups from BL through day 9 with an additional significant intergroup difference (p = 0.048) at day 9. However, the initial strong reduction returned to baseline values after 6 and 12 weeks. CONCLUSION: In periodontally healthy carriers of periodontal pathogens, FM-GPAP as an adjunct to SD transiently enhances the suppression of red complex bacteria. CLINICAL RELEVANCE: Whether the enhanced suppression of red complex bacteria by adjunctive FM-GPAP prevents the development of periodontitis in periodontally healthy carriers requires further investigations.


Assuntos
Polimento Dentário , Desbridamento Periodontal , Bolsa Periodontal/microbiologia , Aggregatibacter actinomycetemcomitans , Feminino , Voluntários Saudáveis , Humanos , Masculino , Projetos Piloto , Porphyromonas gingivalis , Tannerella forsythia , Treponema denticola
2.
BMC Oral Health ; 15: 59, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25971786

RESUMO

BACKGROUND: Plasminogen deficiency is a rare autosomal recessive disease, which is associated with aggressive periodontitis and gingival enlargement. Previously described treatments of plasminogen deficiency associated periodontitis have shown limited success. This is the first case report indicating a successful therapy approach consisting of a non-surgical supra- and subgingival debridement in combination with an adjunctive systemic antibiotic therapy and a strict supportive periodontal regimen over an observation period of 4 years. CASE PRESENTATION: The intraoral examination of a 17-year-old Turkish female with severe plasminogen deficiency revealed generalized increased pocket probing depths ranging from 6 to 9 mm, bleeding on probing over 30%, generalized tooth mobility, and gingival hyperplasia. Alveolar bone loss ranged from 30% to 50%. Clinical attachment loss corresponded to pocket probing depths. Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola, Prevotella intermedia, Prevotella nigrescens and Eikenella corrodens have been detected by realtime polymerase chain reaction. Periodontal treatment consisted of full mouth disinfection and adjunctive systemic administration of amoxicillin (500 mg tid) and metronidazole (400 mg tid). A strict supportive periodontal therapy regimen every three month in terms of supra- and subgingival debridement was rendered. The reported therapy has significantly improved periodontal health and arrested disease progression. Intraoral examination at the end of the observation period 3.5 years after non-surgical periodontal therapy showed generalized decreased pocket probing depths ranging from 1 to 6 mm, bleeding on probing lower 30%, and tooth mobility class I and II. Furthermore, microbiological analysis shows the absence of Porphyromonas gingivalis, Prevotella intermedia and Treponema denticola after therapy. CONCLUSION: Adjunctive antibiotic treatment may alter the oral microbiome and thus, the inflammatory response of periodontal disease associated to plasminogen deficiency and diminishes the risk of pseudomembrane formation and progressive attachment loss. This case report indicates that patients with plasminogen deficiency may benefit from non-surgical periodontal treatment in combination with an adjunctive antibiotic therapy and a strict supportive periodontal therapy regimen.


Assuntos
Conjuntivite/complicações , Periodontite/etiologia , Plasminogênio/deficiência , Dermatopatias Genéticas/complicações , Adolescente , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/terapia , Amoxicilina/uso terapêutico , Antibacterianos/uso terapêutico , Terapia Combinada/métodos , Feminino , Seguimentos , Hemorragia Gengival/etiologia , Hemorragia Gengival/terapia , Hiperplasia Gengival/etiologia , Hiperplasia Gengival/terapia , Humanos , Metronidazol/uso terapêutico , Perda da Inserção Periodontal/etiologia , Perda da Inserção Periodontal/terapia , Desbridamento Periodontal/métodos , Bolsa Periodontal/etiologia , Bolsa Periodontal/terapia , Periodontite/terapia , Mobilidade Dentária/etiologia , Mobilidade Dentária/terapia
3.
J Biol Chem ; 288(47): 33542-33558, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24089526

RESUMO

The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34(+)) leukemic versus normal specimens. Our data indicate that CD34(+) AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34(+) AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34(+) cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34(+) AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34(+) cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Dioxolanos/farmacologia , Glutationa/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Sesquiterpenos/farmacologia , Antígenos CD34 , Feminino , Glutamato-Cisteína Ligase/antagonistas & inibidores , Glutamato-Cisteína Ligase/metabolismo , Glutationa/antagonistas & inibidores , Glutationa Peroxidase/antagonistas & inibidores , Glutationa Peroxidase/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Oxirredução/efeitos dos fármacos , Células Tumorais Cultivadas , Glutationa Peroxidase GPX1
4.
Cell Stem Cell ; 12(3): 329-41, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23333149

RESUMO

Most forms of chemotherapy employ mechanisms involving induction of oxidative stress, a strategy that can be effective due to the elevated oxidative state commonly observed in cancer cells. However, recent studies have shown that relative redox levels in primary tumors can be heterogeneous, suggesting that regimens dependent on differential oxidative state may not be uniformly effective. To investigate this issue in hematological malignancies, we evaluated mechanisms controlling oxidative state in primary specimens derived from acute myelogenous leukemia (AML) patients. Our studies demonstrate three striking findings. First, the majority of functionally defined leukemia stem cells (LSCs) are characterized by relatively low levels of reactive oxygen species (termed "ROS-low"). Second, ROS-low LSCs aberrantly overexpress BCL-2. Third, BCL-2 inhibition reduced oxidative phosphorylation and selectively eradicated quiescent LSCs. Based on these findings, we propose a model wherein the unique physiology of ROS-low LSCs provides an opportunity for selective targeting via disruption of BCL-2-dependent oxidative phosphorylation.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Humanos , Indóis , Leucemia Mieloide Aguda/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Pirróis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas
5.
Cell Stem Cell ; 11(3): 359-72, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22863534

RESUMO

Leukemia stem cells (LSCs) represent a biologically distinct subpopulation of myeloid leukemias, with reduced cell cycle activity and increased resistance to therapeutic challenge. To better characterize key properties of LSCs, we employed a strategy based on identification of genes synergistically dysregulated by cooperating oncogenes. We hypothesized that such genes, termed "cooperation response genes" (CRGs), would represent regulators of LSC growth and survival. Using both a primary mouse model and human leukemia specimens, we show that CRGs comprise genes previously undescribed in leukemia pathogenesis in which multiple pathways modulate the biology of LSCs. In addition, our findings demonstrate that the CRG expression profile can be used as a drug discovery tool for identification of compounds that selectively target the LSC population. We conclude that CRG-based analyses provide a powerful means to characterize the basic biology of LSCs as well as to identify improved methods for therapeutic targeting.


Assuntos
Leucemia/genética , Leucemia/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Oncogenes/genética , Animais , Benzotiazóis/farmacologia , Crise Blástica/genética , Crise Blástica/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/efeitos dos fármacos , Serpinas/metabolismo , Tirfostinas/farmacologia
6.
Blood ; 112(10): 4184-92, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18755985

RESUMO

Recent reports have shown that upon expression of appropriate oncogenes, both stem cells and more differentiated progenitor populations can serve as leukemia-initiating cells. These studies suggest that oncogenic mutations subvert normal development and induce reacquisition of stem-like features. However, no study has described how specific mutations influence the ability of differentiating cell subsets to serve as leukemia-initiating cells and if varying such cellular origins confers a functional difference. We have examined the role of the tumor suppressor gene p19(ARF) in a murine model of acute lymphoblastic leukemia and found that loss of p19(ARF) changes the spectrum of cells capable of tumor initiation. With intact p19(ARF), only hematopoietic stem cells (HSCs) can be directly transformed by BCR/ABL expression. In a p19(ARF)-null genetic background expression of the BCR/ABL fusion protein renders functionally defined HSCs, common lymphoid progenitors (CLP), and precursor B-lymphocytes competent to generate leukemia stem cells. Furthermore, we show that leukemias arising from p19(ARF)-null HSC versus pro-B cells differ biologically, including relative response to drug insult. Our observations elucidate a unique mechanism by which heterogeneity arises in tumor populations harboring identical genetic lesions and show that activity of p19(ARF) profoundly influences the nature of tumor-initiating cells during BCR/ABL-mediated leukemogenesis.


Assuntos
Transformação Celular Neoplásica/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Células Progenitoras Linfoides/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Modelos Animais de Doenças , Proteínas de Fusão bcr-abl/genética , Células Progenitoras Linfoides/patologia , Camundongos , Camundongos Transgênicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
7.
Blood ; 110(7): 2578-85, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17601986

RESUMO

Myeloid leukemia arises from leukemia stem cells (LSCs), which are resistant to standard chemotherapy agents and likely to be a major cause of drug-resistant disease and relapse. To investigate the in vivo properties of LSCs, we developed a mouse model in which the biologic features of human LSCs are closely mimicked. Primitive normal hematopoietic cells were modified to express the BCR/ABL and Nup98/HoxA9 translocation products, and a distinct LSC population, with the aberrant immunophenotype of lineage(-), Kit(+/-), Flt3(+), Sca(+), CD34(+), and CD150(-), was identified. In vivo studies were then performed to assess the response of LSCs to therapeutic insult. Treatment of animals with the ABL kinase inhibitor imatinib mesylate induced specific modulation of blasts and progenitor cells but not stem- cell populations, thereby recapitulating events inferred to occur in human chronic myelogenous leukemia (CML) patients. In addition, challenge of leukemic mice with total body irradiation was selectively toxic to normal hematopoietic stem cells (HSCs), suggesting that LSCs are resistant to apoptosis and/or senescence in vivo. Taken together, the system provides a powerful means by which the in vivo behavior of LSCs versus HSCs can be characterized and candidate treatment regimens can be optimized for maximal specificity toward primitive leukemia cells.


Assuntos
Crise Blástica/genética , Crise Blástica/patologia , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Animais , Ciclo Celular , Linhagem da Célula , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/efeitos da radiação , Fenótipo , Taxa de Sobrevida
8.
Virus Res ; 129(1): 11-25, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17574698

RESUMO

Members of the genus Yatapoxvirus, which include Tanapox virus (TPV) and Yaba monkey tumor virus, infect primates including humans. Two strains of TPV isolated 50 years apart from patients infected from the equatorial region of Africa have been sequenced. The original isolate from a human case in the Tana River Valley, Kenya, in 1957 (TPV-Kenya) and an isolate from an infected traveler in the Republic of Congo in 2004 (TPV-RoC). Although isolated 50 years apart the genomes were highly conserved. The genomes differed at only 35 of 144,565 nucleotide positions (99.98% identical). We predict that TPV-RoC encodes 155 ORFs, however a single transversion (at nucleotide 10241) in TPV-Kenya resulted in the coding capacity for two predicted ORFs (11.1L and 11.2L) in comparison to a single ORF (11L) in TPV-RoC. The genomes of TPV are A+T rich (73%) and 96% of the sequence encodes predicted ORFs. Comparative genomic analysis identified several features shared with other chordopoxviruses. A conserved sequence within the terminal inverted repeat region that is also present in the other members of the Yatapoxviruses as well as members of the Capripoxviruses, Swinepox virus and an unclassified Deerpox virus suggests the existence of a conserved near-terminal sequence secondary structure. Two previously unidentified gene families were annotated that are represented by ORF TPV28L, which matched homologues in certain other chordopoxviruses, and TPV42.5L, which is highly conserved among currently reported chordopoxvirus sequences.


Assuntos
DNA Viral/genética , Genoma Viral , Infecções por Poxviridae/virologia , Infecções Tumorais por Vírus/virologia , Yatapoxvirus/genética , África , Sequência de Aminoácidos , Humanos , Dados de Sequência Molecular , Fases de Leitura Aberta , Alinhamento de Sequência , Homologia de Sequência
9.
Mol Cell Biol ; 23(24): 8992-9002, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645512

RESUMO

The eukaryotic translation initiation factor 4E (eIF4E) acts as both a key translation factor and as a promoter of nucleocytoplasmic transport of specific transcripts. Traditionally, its transformation capacity in vivo is attributed to its role in translation initiation in the cytoplasm. Here, we demonstrate that elevated eIF4E impedes granulocytic and monocytic differentiation. Our subsequent mutagenesis studies indicate that this block is a result of dysregulated eIF4E-dependent mRNA transport. These studies indicate that the RNA transport function of eIF4E could contribute to leukemogenesis. We extended our studies to provide the first evidence that the nuclear transport function of eIF4E contributes to human malignancy, specifically in a subset of acute and chronic myelogenous leukemia patients. We observe an increase in eIF4E-dependent cyclin D1 mRNA transport and a concomitant increase in cyclin D1 protein levels. The aberrant nuclear function of eIF4E is due to abnormally large eIF4E bodies and the loss of regulation by the proline-rich homeodomain PRH. We developed a novel tool to modulate this transport activity. The introduction of IkappaB, the repressor of NF-kappaB, leads to suppression of eIF4E, elevation of PRH, reorganization of eIF4E nuclear bodies, and subsequent downregulation of eIF4E-dependent mRNA transport. Thus, our findings indicate that this nuclear function of eIF4E can contribute to leukemogenesis by promoting growth and by impeding differentiation.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Hematopoese/fisiologia , Leucemia/etiologia , RNA Mensageiro/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Bases , Diferenciação Celular , Ciclina D1/metabolismo , DNA Complementar/genética , DNA de Neoplasias/genética , Fator de Iniciação 4E em Eucariotos/genética , Regulação Neoplásica da Expressão Gênica , Genes myc , Hematopoese/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Técnicas In Vitro , Leucemia/genética , Leucemia/metabolismo , NF-kappa B/metabolismo , RNA Mensageiro/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...